Flow Vision for Autonomous Underwater Vehicles via an Artificial Lateral Line
نویسندگان
چکیده
Most fish have the capability of sensing flows and nearby movements even in dark or murky conditions by using the lateral line organs. This enables them to perform a variety of underwater activities, such as localizing prey, avoiding predators, navigating in narrow spaces, and schooling. To emulate this capability for Autonomous Underwater Vehicles, we developed an artificial lateral line using an array of Micro-Electro-Mechanical-Systems (MEMS) flow sensors. The signals collected via the artificial lateral line are then processed by an adaptive beamforming algorithm developed from Capon’s method. The system produces 3D images of source locations for different hydrodynamic activities, including the vibration of a dipole source and the movement of a tailflicking crayfish. A self-calibration algorithm provides the capability of self-adaptation to different environments. Lastly, we give a Cramer-Rao bound on the theoretical performance limit which is consistent with experimental results.
منابع مشابه
Investigation on Nose and Tail Shape Effects on Hydrodynamic Parameters in Autonomous Underwater Vehicles
Development of autonomous underwater vehicles (AUVs) which meets the design constraints and provides the best hydrodynamic performance is really an important challenge in the field of hydrodynamics. In this paper a new profile is used for designing the hull of AUVs. The nose and tail profiles of an AUV using presented profile is designed such that it can properly consider the length constraints...
متن کاملScheduling of Multiple Autonomous Guided Vehicles for an Assembly Line Using Minimum Cost Network Flow
This paper proposed a parallel automated assembly line system to produce multiple products having multiple autonomous guided vehicles (AGVs). Several assembly lines are configured to produce multiple products in which the technologies of machines are shared among the assembly lines when required. The transportation between the stations in an assembly line (intra assembly line) and among station...
متن کاملDistant touch hydrodynamic imaging with an artificial lateral line.
Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. W...
متن کاملDistributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure ap...
متن کاملAdaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane
This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011